Just as many conventional thermal power stations generate electricity by harnessing the thermal energy released from burning fossil fuels, nuclear power plants convert the energy released from the nucleus of an atom, typically via nuclear fission.

When a relatively large fissile atomic nucleus (usually uranium-235 or plutonium-239) absorbs a neutron, a fission of the atom often results. Fission splits the atom into two or more smaller nuclei with kinetic energy (known as fission products) and also releases gamma radiation and free neutrons. A portion of these neutrons may later be absorbed by other fissile atoms and create more fissions, which release more neutrons, and so on.

This nuclear chain reaction can be controlled by using neutron poisons and neutron moderators to change the portion of neutrons that will go on to cause more fissions. Nuclear reactors generally have automatic and manual systems to shut the fission reaction down if unsafe conditions are detected.

A cooling system removes heat from the reactor core and transports it to another area of the plant, where the thermal energy can be harnessed to produce electricity or to do other useful work. Typically the hot coolant will be used as a heat source for a boiler, and the pressurized steam from that boiler will power one or more steam turbine driven electrical generators.

There are many different reactor designs, utilizing different fuels and coolants and incorporating different control schemes. Some of these designs have been engineered to meet a specific need. Reactors for nuclear submarines and large naval ships, for example, commonly use highly enriched uranium as a fuel. This fuel choice increases the reactor's power density and extends the usable life of the nuclear fuel load, but is more expensive and a greater risk to nuclear proliferation than some of the other nuclear fuels.

A number of new designs for nuclear power generation, collectively known as the Generation IV reactors, are the subject of active research and may be used for practical power generation in the future. Many of these new designs specifically attempt to make fission reactors cleaner, safer and/or less of a risk to the proliferation of nuclear weapons. Passively safe plants (such as the ESBWR) are available to be built and other designs that are believed to be nearly fool-proof are being pursued. Fusion reactors, which may be viable in the future, diminish or eliminate many of the risks associated with nuclear fission.

There are two types of nuclear power in current use:

  • The Radioisotope thermoelectric generator produces heat through passive radioactive decay. Some radioisotope thermoelectric generators have been created to power space probes (for example, the Cassini probe), some lighthouses in the former Soviet Union, and some pacemakers. The heat output of these generators diminishes with time; the heat is converted to electricity utilising the thermoelectric effect.
  • Nuclear fission reactors produce heat through a controlled nuclear chain reaction in a critical mass of fissile material. All current nuclear power plants are critical fission reactors, which are the focus of this article. The output of fission reactors is controllable. There are several subtypes of critical fission reactors, which can be classified as Generation I, Generation II and Generation III. All reactors will be compared to the Pressurized Water Reactor (PWR), as that is the standard modern reactor design.
Pressurized Water Reactors (PWR)
These reactors use a pressure vessel to contain the nuclear fuel, control rods, moderator, and coolant. They are cooled and moderated by high pressure liquid water. The hot radioactive water that leaves the pressure vessel is looped through a steam generator, which in turn heats a secondary (non-radioactive) loop of water to steam that can run turbines. They are the majority of current reactors, and are generally considered the safest and most reliable technology currently in large scale deployment. This is a thermal neutron reactor design, the newest of which are the VVER-1200, Advanced Pressurized Water Reactor and the European Pressurized Reactor. United States Naval reactors are of this type.
Boiling Water Reactors (BWR)
A BWR is like a PWR without the steam generator. A boiling water reactor is cooled and moderated by water like a PWR, but at a lower pressure, which allows the water to boil inside the pressure vessel producing the steam that runs the turbines. Unlike a PWR, there is no primary and secondary loop. The thermal efficiency of these reactors can be higher, and they can be simpler, and even potentially more stable and safe. This is a thermal neutron reactor design, the newest of which are the Advanced Boiling Water Reactor and the Economic Simplified Boiling Water Reactor.
Pressurized Heavy Water Reactor (PHWR)
A Canadian design (known as CANDU), these reactors are heavy-water-cooled and -moderated Pressurized-Water reactors. Instead of using a single large pressure vessel as in a PWR, the fuel is contained in hundreds of pressure tubes. These reactors are fueled with natural uranium and are thermal neutron reactor designs. PHWRs can be refueled while at full power, which makes them very efficient in their use of uranium (it allows for precise flux control in the core). CANDU PHWRs have been built in Canada, Argentina, China, India (pre-NPT), Pakistan (pre-NPT), Romania, and South Korea. India also operates a number of PHWRs, often termed 'CANDU-derivatives', built after the Government of Canada halted nuclear dealings with India following the 1974 Smiling Buddha nuclear weapon test.
Reaktor Bolshoy Moschnosti Kanalniy (High Power Channel Reactor) (RBMK)
A Soviet design, built to produce plutonium as well as power. RBMKs are water cooled with a graphite moderator. RBMKs are in some respects similar to CANDU in that they are refuelable during power operation and employ a pressure tube design instead of a PWR-style pressure vessel. However, unlike CANDU they are very unstable and large, making containment buildings for them expensive. A series of critical safety flaws have also been identified with the RBMK design, though some of these were corrected following the Chernobyl accident. Their main attraction is their use of light water and un-enriched uranium. As of 2010, 11 remain open, mostly due to safety improvements and help from international safety agencies such as the DOE. Despite these safety improvements, RBMK reactors are still considered one of the most dangerous reactor designs in use. RBMK reactors were deployed only in the former Soviet Union.
Gas Cooled Reactor (GCR) and Advanced Gas Cooled Reactor (AGR)
These are generally graphite moderated and CO2 cooled. They can have a high thermal efficiency compared with PWRs due to higher operating temperatures. There are a number of operating reactors of this design, mostly in the United Kingdom, where the concept was developed. Older designs (i.e. Magnox stations) are either shut down or will be in the near future. However, the AGCRs have an anticipated life of a further 10 to 20 years. This is a thermal neutron reactor design. Decommissioning costs can be high due to large volume of reactor core.

Liquid Metal Fast Breeder Reactor (LMFBR)
This is a reactor design that is cooled by liquid metal, totally unmoderated, and produces more fuel than it consumes. They are said to "breed" fuel, because they produce fissionable fuel during operation because of neutron capture. These reactors can function much like a PWR in terms of efficiency, and do not require much high pressure containment, as the liquid metal does not need to be kept at high pressure, even at very high temperatures. BN-350 and BN-600 in USSR and Superphénix in France were a reactor of this type, as was Fermi-I in the United States. The Monju reactor in Japan suffered a sodium leak in 1995 and is pending restart earliest in February 2010. All of them use/used liquid sodium. These reactors are fast neutron, not thermal neutron designs. These reactors come in two types:
Lead cooled
Using lead as the liquid metal provides excellent radiation shielding, and allows for operation at very high temperatures. Also, lead is (mostly) transparent to neutrons, so fewer neutrons are lost in the coolant, and the coolant does not become radioactive. Unlike sodium, lead is mostly inert, so there is less risk of explosion or accident, but such large quantities of lead may be problematic from toxicology and disposal points of view. Often a reactor of this type would use a lead-bismuth eutectic mixture. In this case, the bismuth would present some minor radiation problems, as it is not quite as transparent to neutrons, and can be transmuted to a radioactive isotope more readily than lead. The Russian Alfa class submarine uses a lead-bismuth-cooled fast reactor as its main power plant.
Sodium cooled
Most LMFBRs are of this type. The sodium is relatively easy to obtain and work with, and it also manages to actually prevent corrosion on the various reactor parts immersed in it. However, sodium explodes violently when exposed to water, so care must be taken, but such explosions wouldn't be vastly more violent than (for example) a leak of superheated fluid from a SCWR or PWR. EBR-I, the first reactor to have a core meltdown, was of this type.
Pebble Bed Reactors (PBR)
These use fuel molded into ceramic balls, and then circulate gas through the balls. The result is an efficient, low-maintenance, very safe reactor with inexpensive, standardized fuel. The prototype was the AVR.

Molten Salt Reactors
These dissolve the fuels in fluoride salts, or use fluoride salts for coolant. These have many safety features, high efficiency and a high power density suitable for vehicles. Notably, they have no high pressures or flammable components in the core. The prototype was the MSRE, which also used Thorium's fuel cycle to produce 0.1% of the radioactive waste of standard reactors.

Aqueous Homogeneous Reactor (AHR)
These reactors use soluble nuclear salts dissolved in water and mixed with a coolant and a neutron moderator.