Three Mile Island Nuclear Accident Radioactive material release

Once the first line of containment is breached during a reactor plant accident, there is a possibility that the fuel or the fission products held inside can be released into the environment. Although the zirconium fuel cladding has been breached in other nuclear reactors without generating a release to the environment, at TMI-2 operators permitted fission products to leave the other containment barriers. This occured when the cladding was damaged while the PORV was still stuck open. Fission products were released into the reactor coolant. Since the PORV was stuck open and the loss of coolant accident was still in progress, primary coolant with fission products and/or fuel was released, and ultimately ended up in the auxiliary building. This auxiliary building was outside the containment boundary. This was evidence by the radiation alarms that eventually sounded. However, since very little of the fission products released were solids at room temperature, very little radiological contamination was reported in the environment. No significant level of radiation was attributed to the TMI-2 accident outside of the TMI-2 facility. Noble gases made up the bulk of the release of radioactive materials from TMI-2, with the next most abundant element being iodine.

Within hours of the accident the United States Environmental Protection Agency (EPA) began daily sampling of the environment at the three stations closest to the plant. By April 1, continuous monitoring at 11 stations was established and was expanded to 31 stations two days later. An inter-agency analysis concluded that the accident did not raise radioactivity far enough above background levels to cause even one additional cancer death among the people in the area. The EPA found no contamination in water, soil, sediment or plant samples.

Researchers at nearby Dickinson College, which had radiation monitoring equipment sensitive enough to detect Chinese atmospheric atomic weapons testing, collected soil samples from the area for the ensuing two weeks and detected no elevated levels of radioactivity, except after rainfalls (likely due to natural radon plate out, not the accident). Also, white-tailed deer tongues harvested over 50 mi (80 km) from the reactor subsequent to the accident were found to have significantly higher levels of Cs-137 than in deer in the counties immediately surrounding the power plant. Even then, the elevated levels were still below those seen in deer in other parts of the country during the height of atmospheric weapons testing. Had there been elevated releases of radioactivity, increased levels of Iodine-131 and Cesium-137 would have been expected to be detected in cattle and goat's milk samples. Yet elevated levels were not found.

A later scientific study noted that the official emission figures were consistent with available dosimeter data, though others have noted the incompleteness of this data, particularly for releases early on.

According to the official figures, as compiled by the 1979 Kemeny Commission from Metropolitan Edison and NRC data, a maximum of 480 petabecquerels (13 million curies) of radioactive noble gases (primarily xenon) were released by the event. However, these noble gases were considered relatively harmless, and only 481–629 GBq (13–17 curies) of thyroid cancer-causing iodine-131 were released. Total releases according to these figures were a relatively small proportion of the estimated 37 EBq (10 billion curies) in the reactor. It was later found that about half the core had melted, and the cladding around 90% of the fuel rods had failed, with five feet of the core gone, and around 20 tons of uranium flowing to the bottom head of the pressure vessel, forming a mass of corium. The reactor vessel, the second level of containment after the cladding, maintained integrity and contained the damaged fuel with nearly all of the radioactive isotopes in the core.

Anti-nuclear political groups disputed the Kemeny Commission's findings, claiming that independent measurements provided evidence of radiation levels up to five times higher than normal in locations hundreds of miles downwind from TMI. According to Randall Thompson, who claims to have been a health physics technician employed to monitor radioactive emissions at TMI after the accident, radiation releases were hundreds if not thousands of times higher. Some other insiders, including Arnie Gundersen, a former nuclear industry executive who is now an expert witness in nuclear safety issues, make the same claim; Gundersen offers evidence, based on pressure monitoring data, for a hydrogen explosion shortly before 2 p.m. on March 28, 1979, which would have provided the means for a high dose of radiation to occur. Gundersen cites affidavits from four reactor operators according to which the plant manager was aware of a dramatic pressure spike, after which the internal pressure dropped to outside pressure. Gundersen also notes that the control room shook and doors were blown off hinges. However official NRC reports refer merely to a "hydrogen burn." The Kemeny Commission referred to "a burn or an explosion that caused pressure to increase by 28 pounds per square inch in the containment building". The Washington Post reported that "At about 2 p.m., with pressure almost down to the point where the huge cooling pumps could be brought into play, a small hydrogen explosion jolted the reactor."

Related Post